Corrigendum: Metal - Insulator Transition Driven by Vacancy Ordering in GeSbTe Phase Change Materials

نویسندگان

  • Valeria Bragaglia
  • Fabrizio Arciprete
  • Wei Zhang
  • Antonio Massimiliano Mio
  • Eugenio Zallo
  • Karthick Perumal
  • Alessandro Giussani
  • Stefano Cecchi
  • Jos Emiel Boschker
  • Henning Riechert
  • Stefania Privitera
  • Emanuele Rimini
  • Riccardo Mazzarello
  • Raffaella Calarco
چکیده

Phase Change Materials (PCMs) are unique compounds employed in non-volatile random access memory thanks to the rapid and reversible transformation between the amorphous and crystalline state that display large differences in electrical and optical properties. In addition to the amorphous-to-crystalline transition, experimental results on polycrystalline GeSbTe alloys (GST) films evidenced a Metal-Insulator Transition (MIT) attributed to disorder in the crystalline phase. Here we report on a fundamental advance in the fabrication of GST with out-of-plane stacking of ordered vacancy layers by means of three distinct methods: Molecular Beam Epitaxy, thermal annealing and application of femtosecond laser pulses. We assess the degree of vacancy ordering and explicitly correlate it with the MIT. We further tune the ordering in a controlled fashion attaining a large range of resistivity. Employing ordered GST might allow the realization of cells with larger programming windows.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A Review on Disorder-Driven Metal–Insulator Transition in Crystalline Vacancy-Rich GeSbTe Phase-Change Materials

Metal-insulator transition (MIT) is one of the most essential topics in condensed matter physics and materials science. The accompanied drastic change in electrical resistance can be exploited in electronic devices, such as data storage and memory technology. It is generally accepted that the underlying mechanism of most MITs is an interplay of electron correlation effects (Mott type) and disor...

متن کامل

Effects of stoichiometry on the transport properties of crystalline phase-change materials

It has recently been shown that a metal-insulator transition due to disorder occurs in the crystalline state of the GeSb2Te4 phase-change compound. The transition is triggered by the ordering of the vacancies upon thermal annealing. In this work, we investigate the localization properties of the electronic states in selected crystalline (GeTe)x-(Sb2Te3)y compounds with varying GeTe content by l...

متن کامل

Investigation of effect of magnetic ordering on structural and electronic properties of double perovskites Sr2BWO6 (B = Co, Ni, Cu) using ab initio method

Structural and electronic properties of double perovskites Sr2BWO6 (B = Co, Ni, Cu)  were studied  for each of three magnetic configurations nonmagnetic, ferromagnetic, and antiferromagnetic by using density functional theory in generalized gradient approximations (GGA) and strong correlation correction (GGA + U). Due to magnetic transition from antiferromagnetic to nonmagnetic phase, an electr...

متن کامل

Magnetic fluctuations driven insulator-to-metal transition in Ca(Ir1−xRux)O3

Magnetic fluctuations in transition metal oxides are a subject of intensive research because of the key role they are expected to play in the transition from the Mott insulator to the unconventional metallic phase of these materials, and also as drivers of superconductivity. Despite much effort, a clear link between magnetic fluctuations and the insulator-to-metal transition has not yet been es...

متن کامل

Organic metal (EDO-TTF)2PF6 with multi-instability.

The multi-instability of the electronic structure of (EDO-TTF)2PF6, where EDO-TTF means ethylene-dioxytetrathiafulvalene, is reviewed. This complex showed the metal-insulator transition at 280 K associated with distinct molecular deformations. The mechanism is interpreted as the cooperation of Peierls transition, charge ordering, and the order-disorder transition of the countercomponent. The ch...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره 6  شماره 

صفحات  -

تاریخ انتشار 2016